Fibroblast growth factor 4

FGF receptors (FGFRs) are involved in the pathogenesis

fallback-image

Spike Protein Luciferase

Human Centriole and Centrosome Antibody IgG ELISA Kit

MBS039049-10x96StripWells 10x96-Strip-Wells
EUR 6725

Human IgG antibody Laboratories manufactures the spike protein luciferase reagents distributed by Genprice. The Spike Protein Luciferase reagent is RUO (Research Use Only) to test human serum or cell culture lab samples. To purchase these products, for the MSDS, Data Sheet, protocol, storage conditions/temperature or for the concentration, please contact Spike Protein. Other Spike products are available in stock. Specificity: Spike Category: Protein Group: Luciferase

True Blue

1mg Ask for price
Description: True Blue

True Blue

50mg Ask for price
Description: True Blue

True Blue

5mg Ask for price
Description: True Blue

Human True Insulin ELISA Kit

10x96-Strip-Wells
EUR 6725

Human True Insulin ELISA Kit

48-Strip-Wells
EUR 550

Human True Insulin ELISA Kit

5x96-Strip-Wells
EUR 3420

Human True Insulin ELISA Kit

96-Strip-Wells
EUR 765

Human True Insulin GENLISA ELISA

1 x 96 wells
EUR 286

Human True insulin ELISA kit

96T
EUR 700
Description: ELISA

Human True insulin ELISA kit

192 tests
EUR 1524
Description: A competitive ELISA for quantitative measurement of Human True insulin in samples from blood, plasma, serum, cell culture supernatant and other biological fluids. This is a high quality ELISA kit developped for optimal performance with samples from the particular species.

Human True insulin ELISA kit

1 plate of 48 wells
EUR 624
Description: A competitive ELISA for quantitative measurement of Human True insulin in samples from blood, plasma, serum, cell culture supernatant and other biological fluids. This is a high quality ELISA kit developped for optimal performance with samples from the particular species.

Human True insulin ELISA kit

48 wells plate
EUR 280

Luciferase information

Spike (BQ.1.1, Omicron Variant) (SARS-CoV-2) Pseudotyped Lentivirus (Luciferase Reporter)

78698-1 100 µl
EUR 835
Description: The pandemic coronavirus disease 2019 (COVID-19) is caused by Severe Acute Respiratory Syndrome Coronavirus 2 (SARS-CoV-2). As the first step of the viral replication, the virus attaches to the host cell surface before entering the cell. The viral Spike protein recognizes and attaches to the Angiotensin-Converting Enzyme 2 (ACE2) receptor found on the surface of type I and II pneumocytes, endothelial cells, and ciliated bronchial epithelial cells. Drugs targeting the interaction between the Spike protein of SARS-CoV-2 and ACE2 may offer protection against the viral infection. Omicron Variant was identified in South Africa in November of 2021. This variant has a large number of mutations that allow the virus to spread more easily and quickly than other variants. As of May 2022, Omicron variants were divided into seven distinct sub-lineages: BA.1, BA.1.1, BA.2, BA.3, BA.2.12.1, BA.4, and BA.5. As of October 2022, several new BA.5 sub-lineages (e.g. BQ.1, BQ.1.1, BF.7) have been designated._x000D_The spike protein of BQ.1.1 omicron variant has additional mutations (R346T, K444T and N460K) based on the BA.5 variant. The Spike (BQ.1.1, Omicron Variant) (SARS-CoV-2) Pseudotyped Lentiviruses were produced with SARS-CoV-2 Spike (Genbank Accession #QHD43416.1 containing all the Omicron BQ.1.1 mutations; see below for details) as the envelope glycoprotein instead of the commonly used VSV-G. These pseudovirions contain the firefly luciferase gene driven by a CMV promoter (Figure 1), therefore, the spike-mediated cell entry can be measured via luciferase activity. The Spike (BQ.1.1, Omicron Variant) (SARS-CoV-2) pseudovirus can be used to measure the activity of a neutralizing antibody against SARS-CoV-2 Omicron BQ.1.1 variant in a Biosafety Level 2 facility._x000D_

_x000D_Figure 1. Schematic of the Luciferase Reporter in SARS-CoV-2 Spike Pseudovirion_x000D_As shown in Figures 2 and 3 in Validation Data, the Spike Omicron BQ.1.1 pseudovirus has been validated for use with ACE2-HEK293 target cells (which overexpress ACE2; BPS Bioscience #79951)._x000D_Spike Mutations in BQ.1.1 Omicron Variant:_x000D_Del69-70, T19I, LPPA24-27S, G142D, V213G, G339D, R346T, S371F, S373P, S375F, T376A, D405N, R408S, K417N, N440K, K444T, L452R, N460K, S477N, T478K, E484A, F486V, Q498R, N501Y, Y505H, D614G, H655Y, N679K, P681H, N764K, D796Y, Q954H, N969K

Spike (BQ.1.1, Omicron Variant) (SARS-CoV-2) Pseudotyped Lentivirus (Luciferase Reporter)

78698-2 500 µl x 2
EUR 4195
Description: The pandemic coronavirus disease 2019 (COVID-19) is caused by Severe Acute Respiratory Syndrome Coronavirus 2 (SARS-CoV-2). As the first step of the viral replication, the virus attaches to the host cell surface before entering the cell. The viral Spike protein recognizes and attaches to the Angiotensin-Converting Enzyme 2 (ACE2) receptor found on the surface of type I and II pneumocytes, endothelial cells, and ciliated bronchial epithelial cells. Drugs targeting the interaction between the Spike protein of SARS-CoV-2 and ACE2 may offer protection against the viral infection. Omicron Variant was identified in South Africa in November of 2021. This variant has a large number of mutations that allow the virus to spread more easily and quickly than other variants. As of May 2022, Omicron variants were divided into seven distinct sub-lineages: BA.1, BA.1.1, BA.2, BA.3, BA.2.12.1, BA.4, and BA.5. As of October 2022, several new BA.5 sub-lineages (e.g. BQ.1, BQ.1.1, BF.7) have been designated._x000D_The spike protein of BQ.1.1 omicron variant has additional mutations (R346T, K444T and N460K) based on the BA.5 variant. The Spike (BQ.1.1, Omicron Variant) (SARS-CoV-2) Pseudotyped Lentiviruses were produced with SARS-CoV-2 Spike (Genbank Accession #QHD43416.1 containing all the Omicron BQ.1.1 mutations; see below for details) as the envelope glycoprotein instead of the commonly used VSV-G. These pseudovirions contain the firefly luciferase gene driven by a CMV promoter (Figure 1), therefore, the spike-mediated cell entry can be measured via luciferase activity. The Spike (BQ.1.1, Omicron Variant) (SARS-CoV-2) pseudovirus can be used to measure the activity of a neutralizing antibody against SARS-CoV-2 Omicron BQ.1.1 variant in a Biosafety Level 2 facility._x000D_

_x000D_Figure 1. Schematic of the Luciferase Reporter in SARS-CoV-2 Spike Pseudovirion_x000D_As shown in Figures 2 and 3 in Validation Data, the Spike Omicron BQ.1.1 pseudovirus has been validated for use with ACE2-HEK293 target cells (which overexpress ACE2; BPS Bioscience #79951)._x000D_Spike Mutations in BQ.1.1 Omicron Variant:_x000D_Del69-70, T19I, LPPA24-27S, G142D, V213G, G339D, R346T, S371F, S373P, S375F, T376A, D405N, R408S, K417N, N440K, K444T, L452R, N460K, S477N, T478K, E484A, F486V, Q498R, N501Y, Y505H, D614G, H655Y, N679K, P681H, N764K, D796Y, Q954H, N969K

Spike (BF.7, Omicron Variant) (SARS-CoV-2) Pseudotyped Lentivirus (Luciferase Reporter)

78699-1 100 µl
EUR 835
Description: The pandemic coronavirus disease 2019 (COVID-19) is caused by Severe Acute Respiratory Syndrome Coronavirus 2 (SARS-CoV-2). As the first step of the viral replication, the virus attaches to the host cell surface before entering the cell. The viral Spike protein recognizes and attaches to the Angiotensin-Converting Enzyme 2 (ACE2) receptor found on the surface of type I and II pneumocytes, endothelial cells, and ciliated bronchial epithelial cells. Drugs targeting the interaction between the Spike protein of SARS-CoV-2 and ACE2 may offer protection against the viral infection. Omicron Variant was identified in South Africa in November of 2021. This variant has a large number of mutations that allow the virus to spread more easily and quickly than other variants. As of May 2022, Omicron variants were divided into seven distinct sub-lineages: BA.1, BA.1.1, BA.2, BA.3, BA.2.12.1, BA.4, and BA.5. As of October 2022, several new BA.5 sub-lineages (e.g. BQ.1, BQ.1.1, BF.7) have been designated._x000D_The spike protein of BF.7 omicron variant has additional mutation R346T based on the BA.5 variant. The Spike (BF.7, Omicron Variant) (SARS-CoV-2) Pseudotyped Lentiviruses were produced with SARS-CoV-2 Spike (Genbank Accession #QHD43416.1 containing all the Omicron BF.7 mutations; see below for details) as the envelope glycoprotein instead of the commonly used VSV-G. These pseudovirions contain the firefly luciferase gene driven by a CMV promoter (Figure 1), therefore, the spike-mediated cell entry can be measured via luciferase activity. The Spike (BF.7, Omicron Variant) (SARS-CoV-2) pseudovirus can be used to measure the activity of a neutralizing antibody against SARS-CoV-2 Omicron BF.7 variant in a Biosafety Level 2 facility._x000D_

_x000D_Figure 1. Schematic of the Luciferase Reporter in SARS-CoV-2 Spike Pseudovirion._x000D_As shown in Figures 2 and 3 in Validation Data, the Spike Omicron BF.7 pseudovirus has been validated for use with ACE2-HEK293 target cells (which overexpress ACE2; BPS Bioscience #79951)._x000D_Spike Mutations in BF.7 Omicron Variant:_x000D_Del69-70, T19I, LPPA24-27S, G142D, V213G, G339D, R346T, S371F, S373P, S375F, T376A, D405N, R408S, K417N, N440K, L452R, S477N, T478K, E484A, F486V, Q498R, N501Y, Y505H, D614G, H655Y, N679K, P681H, N764K, D796Y, Q954H, N969K

Spike (BF.7, Omicron Variant) (SARS-CoV-2) Pseudotyped Lentivirus (Luciferase Reporter)

78699-2 500 µl x 2
EUR 4195
Description: The pandemic coronavirus disease 2019 (COVID-19) is caused by Severe Acute Respiratory Syndrome Coronavirus 2 (SARS-CoV-2). As the first step of the viral replication, the virus attaches to the host cell surface before entering the cell. The viral Spike protein recognizes and attaches to the Angiotensin-Converting Enzyme 2 (ACE2) receptor found on the surface of type I and II pneumocytes, endothelial cells, and ciliated bronchial epithelial cells. Drugs targeting the interaction between the Spike protein of SARS-CoV-2 and ACE2 may offer protection against the viral infection. Omicron Variant was identified in South Africa in November of 2021. This variant has a large number of mutations that allow the virus to spread more easily and quickly than other variants. As of May 2022, Omicron variants were divided into seven distinct sub-lineages: BA.1, BA.1.1, BA.2, BA.3, BA.2.12.1, BA.4, and BA.5. As of October 2022, several new BA.5 sub-lineages (e.g. BQ.1, BQ.1.1, BF.7) have been designated._x000D_The spike protein of BF.7 omicron variant has additional mutation R346T based on the BA.5 variant. The Spike (BF.7, Omicron Variant) (SARS-CoV-2) Pseudotyped Lentiviruses were produced with SARS-CoV-2 Spike (Genbank Accession #QHD43416.1 containing all the Omicron BF.7 mutations; see below for details) as the envelope glycoprotein instead of the commonly used VSV-G. These pseudovirions contain the firefly luciferase gene driven by a CMV promoter (Figure 1), therefore, the spike-mediated cell entry can be measured via luciferase activity. The Spike (BF.7, Omicron Variant) (SARS-CoV-2) pseudovirus can be used to measure the activity of a neutralizing antibody against SARS-CoV-2 Omicron BF.7 variant in a Biosafety Level 2 facility._x000D_

_x000D_Figure 1. Schematic of the Luciferase Reporter in SARS-CoV-2 Spike Pseudovirion._x000D_As shown in Figures 2 and 3 in Validation Data, the Spike Omicron BF.7 pseudovirus has been validated for use with ACE2-HEK293 target cells (which overexpress ACE2; BPS Bioscience #79951)._x000D_Spike Mutations in BF.7 Omicron Variant:_x000D_Del69-70, T19I, LPPA24-27S, G142D, V213G, G339D, R346T, S371F, S373P, S375F, T376A, D405N, R408S, K417N, N440K, L452R, S477N, T478K, E484A, F486V, Q498R, N501Y, Y505H, D614G, H655Y, N679K, P681H, N764K, D796Y, Q954H, N969K

Spike (XBB.1.5, Omicron Variant) (SARS-CoV-2) Pseudotyped Lentivirus (Luciferase Reporter)

78736-1 100 µl
EUR 875
Description: The pandemic coronavirus disease 2019 (COVID-19) is caused by Severe Acute Respiratory Syndrome Coronavirus 2 (SARS-CoV-2). As the first step of the viral replication, the virus attaches to the host cell surface before entering the cell. The viral Spike protein recognizes and attaches to the Angiotensin-Converting Enzyme 2 (ACE2) receptor found on the surface of type I and II pneumocytes, endothelial cells, and ciliated bronchial epithelial cells. Drugs targeting the interaction between the Spike protein of SARS-CoV-2 and human ACE2 may offer protection against the viral infection. Omicron Variant was identified in South Africa in November of 2021. This variant has a large number of mutations that allow the virus to spread more easily and quickly than other variants. As of May 2022, Omicron variants were divided into seven distinct sub-lineages: BA.1, BA.1.1, BA.2, BA.3, BA.2.12.1, BA.4, and BA.5. As of January 2023, additional new sub-lineages (e.g. BQ.1, BQ.1.1, BF.7, XBB.1, XBB.1.5) have been designated._x000D_The Spike (XBB.1.5, Omicron Variant) (SARS-CoV-2) Pseudotyped Lentiviruses were produced with SARS-CoV-2 Spike (Genbank Accession #QHD43416.1 containing all the XBB.1.5 mutations; see below for details) as the envelope glycoprotein instead of the commonly used VSV-G. These pseudovirions contain the firefly luciferase gene driven by a CMV promoter (Figure 1), therefore, the spike-mediated cell entry can be measured via luciferase activity. The Spike (XBB.1.5, Omicron Variant) (SARS-CoV-2) pseudovirus can be used to measure the activity of a neutralizing antibody against SARS-CoV-2 Omicron XBB.1.5 variant in a Biosafety Level 2 facility._x000D_

_x000D_Figure 1. Schematic of the Luciferase Reporter in SARS-CoV-2 Spike Pseudovirion._x000D_As shown in Figure 2, the Spike Omicron XBB.1.5 pseudovirus has been validated for use with ACE2-HEK293 target cells (which overexpress ACE2; BPS Bioscience #79951)._x000D_Spike Mutations in XBB.1.5 Omicron Variant: T19I, LPP24-26del, A27S, V83A, G142D, Y144del, H146Q, Q183E, V213E, G252V, G339H, R346T, L368I, S371F, S373P, S375F, T376A, D405N, R408S, K417N, N440K, V445P, G446S, N460K, S477N, T478K, E484A, F486P, F490S, Q498R, N501Y, Y505H, D614G, H655Y, N679K, P681H, N764K, D796Y, Q954H, N969K

Spike (XBB.1.5, Omicron Variant) (SARS-CoV-2) Pseudotyped Lentivirus (Luciferase Reporter)

78736-2 500 µl x 2
EUR 4405
Description: The pandemic coronavirus disease 2019 (COVID-19) is caused by Severe Acute Respiratory Syndrome Coronavirus 2 (SARS-CoV-2). As the first step of the viral replication, the virus attaches to the host cell surface before entering the cell. The viral Spike protein recognizes and attaches to the Angiotensin-Converting Enzyme 2 (ACE2) receptor found on the surface of type I and II pneumocytes, endothelial cells, and ciliated bronchial epithelial cells. Drugs targeting the interaction between the Spike protein of SARS-CoV-2 and human ACE2 may offer protection against the viral infection. Omicron Variant was identified in South Africa in November of 2021. This variant has a large number of mutations that allow the virus to spread more easily and quickly than other variants. As of May 2022, Omicron variants were divided into seven distinct sub-lineages: BA.1, BA.1.1, BA.2, BA.3, BA.2.12.1, BA.4, and BA.5. As of January 2023, additional new sub-lineages (e.g. BQ.1, BQ.1.1, BF.7, XBB.1, XBB.1.5) have been designated._x000D_The Spike (XBB.1.5, Omicron Variant) (SARS-CoV-2) Pseudotyped Lentiviruses were produced with SARS-CoV-2 Spike (Genbank Accession #QHD43416.1 containing all the XBB.1.5 mutations; see below for details) as the envelope glycoprotein instead of the commonly used VSV-G. These pseudovirions contain the firefly luciferase gene driven by a CMV promoter (Figure 1), therefore, the spike-mediated cell entry can be measured via luciferase activity. The Spike (XBB.1.5, Omicron Variant) (SARS-CoV-2) pseudovirus can be used to measure the activity of a neutralizing antibody against SARS-CoV-2 Omicron XBB.1.5 variant in a Biosafety Level 2 facility._x000D_

_x000D_Figure 1. Schematic of the Luciferase Reporter in SARS-CoV-2 Spike Pseudovirion._x000D_As shown in Figure 2, the Spike Omicron XBB.1.5 pseudovirus has been validated for use with ACE2-HEK293 target cells (which overexpress ACE2; BPS Bioscience #79951)._x000D_Spike Mutations in XBB.1.5 Omicron Variant: T19I, LPP24-26del, A27S, V83A, G142D, Y144del, H146Q, Q183E, V213E, G252V, G339H, R346T, L368I, S371F, S373P, S375F, T376A, D405N, R408S, K417N, N440K, V445P, G446S, N460K, S477N, T478K, E484A, F486P, F490S, Q498R, N501Y, Y505H, D614G, H655Y, N679K, P681H, N764K, D796Y, Q954H, N969K

Spike (BA.2, Omicron Variant) (SARS-CoV-2) Pseudotyped VSV Delta G (Luciferase Reporter)

78635-1 100 µl
EUR 795
Description: The Spike (BA.2 Variant) (SARS-CoV-2) Pseudotyped VSV Delta G (Luciferase Reporter) was produced with SARS-CoV-2 Spike (Genbank Accession #QHD43416.1 containing all the Omicron BA.2 mutations; see below for details) as the envelope glycoprotein instead of VSV-G. The pseudovirions contain the firefly luciferase gene; therefore, the spike-mediated cell entry can be measured via luciferase activity. The Spike (BA.2 Variant) (SARS-CoV-2) Pseudotyped VSV Delta G (Luciferase Reporter) can be used to measure the activity of a neutralizing antibody against SARS-CoV-2 BA.2 variant in a Biosafety Level 2 facility.

Spike (BA.2, Omicron Variant) (SARS-CoV-2) Pseudotyped VSV Delta G (Luciferase Reporter)

78635-2 500 µl x 2
EUR 3995
Description: The Spike (BA.2 Variant) (SARS-CoV-2) Pseudotyped VSV Delta G (Luciferase Reporter) was produced with SARS-CoV-2 Spike (Genbank Accession #QHD43416.1 containing all the Omicron BA.2 mutations; see below for details) as the envelope glycoprotein instead of VSV-G. The pseudovirions contain the firefly luciferase gene; therefore, the spike-mediated cell entry can be measured via luciferase activity. The Spike (BA.2 Variant) (SARS-CoV-2) Pseudotyped VSV Delta G (Luciferase Reporter) can be used to measure the activity of a neutralizing antibody against SARS-CoV-2 BA.2 variant in a Biosafety Level 2 facility.

Spike (BA.2.12.1, Omicron Variant) (SARS-CoV-2) Pseudotyped VSV Delta G (Luciferase Reporter)

78643-1 100 µl
EUR 795
Description: The Spike (BA.2.12.1, Omicron Variant) (SARS-CoV-2) Pseudotyped VSV Delta G (Luciferase Reporter) was produced with SARS-CoV-2 Spike (Genbank Accession #QHD43416.1 containing all the Omicron BA.2.12.1 mutations; see below for details) as the envelope glycoprotein instead of VSV-G. The pseudovirions contain the firefly luciferase gene, therefore, the spike-mediated cell entry can be measured via luciferase activity. The Spike (BA.2.12.1 Variant) (SARS-CoV-2) Pseudotyped VSV Delta G (Luciferase Reporter) can be used to measure the activity of a neutralizing antibody against SARS-CoV-2 BA.2.12.1 variant in a Biosafety Level 2 facility._x000D_The Spike (BA.2.12.1 Variant) (SARS-CoV-2) Pseudotyped VSV Delta G (Luciferase Reporter) has been validated for use with target cells Vero-E6 and ACE2-HEK293 (BPS Bioscience #79951). Spike VSV Delta G is preferred for use in cells such as Vero-E6 and Calu-3._x000D_Spike Mutations in BA.2.12.1, Omicron Variant:_x000D_T19I, LPPA24-27S, G142D, V213G, G339D, S371F, S373P, S375F, T376A, D405N, R408S, K417N, N440K, L452Q, S477N, T478K, E484A, Q493R, Q498R, N501Y, Y505H, D614G, H655Y, N679K, P681H, S704L, N764K, D796Y, Q954H, N969K

Spike (BA.2.12.1, Omicron Variant) (SARS-CoV-2) Pseudotyped VSV Delta G (Luciferase Reporter)

78643-2 500 µl x 2
EUR 3995
Description: The Spike (BA.2.12.1, Omicron Variant) (SARS-CoV-2) Pseudotyped VSV Delta G (Luciferase Reporter) was produced with SARS-CoV-2 Spike (Genbank Accession #QHD43416.1 containing all the Omicron BA.2.12.1 mutations; see below for details) as the envelope glycoprotein instead of VSV-G. The pseudovirions contain the firefly luciferase gene, therefore, the spike-mediated cell entry can be measured via luciferase activity. The Spike (BA.2.12.1 Variant) (SARS-CoV-2) Pseudotyped VSV Delta G (Luciferase Reporter) can be used to measure the activity of a neutralizing antibody against SARS-CoV-2 BA.2.12.1 variant in a Biosafety Level 2 facility._x000D_The Spike (BA.2.12.1 Variant) (SARS-CoV-2) Pseudotyped VSV Delta G (Luciferase Reporter) has been validated for use with target cells Vero-E6 and ACE2-HEK293 (BPS Bioscience #79951). Spike VSV Delta G is preferred for use in cells such as Vero-E6 and Calu-3._x000D_Spike Mutations in BA.2.12.1, Omicron Variant:_x000D_T19I, LPPA24-27S, G142D, V213G, G339D, S371F, S373P, S375F, T376A, D405N, R408S, K417N, N440K, L452Q, S477N, T478K, E484A, Q493R, Q498R, N501Y, Y505H, D614G, H655Y, N679K, P681H, S704L, N764K, D796Y, Q954H, N969K

Spike (BA.4/5, Omicron Variant) (SARS-CoV-2) Pseudotyped VSV Delta G (Luciferase Reporter)

78644-1 100 µl
EUR 795
Description: The Spike protein of BA.4 and BA.5 variants of SARS-CoV-2 have identical mutations. In this datasheet, the spike protein of BA.4 and BA.5 are referred to as BA.4/5._x000D_The Spike (BA.4/5, Omicron Variant) (SARS-CoV-2) Pseudotyped VSV Delta G (Luciferase Reporter) was produced with SARS-CoV-2 Spike (Genbank Accession #QHD43416.1 containing all the Omicron BA.4/5 mutations; see below for details) as the envelope glycoprotein instead of VSV-G. The pseudovirions contain the firefly luciferase gene, therefore, the spike-mediated cell entry can be measured via luciferase activity. The Spike (BA.4/5 Variant) (SARS-CoV-2) Pseudotyped VSV Delta G (Luciferase Reporter) can be used to measure the activity of a neutralizing antibody against SARS-CoV-2 BA.4/5 variant in a Biosafety Level 2 facility._x000D_The Spike (BA.4/5 Variant) (SARS-CoV-2) Pseudotyped VSV Delta G (Luciferase Reporter) has been validated for use with target cells Vero-E6 and ACE2-HEK293 (BPS Bioscience #79951). Spike VSV Delta G is preferred for use in cells such as Vero-E6 and Calu-3._x000D_Spike Mutations in BA.4/5, Omicron Variant:_x000D_Del69-70, T19I, LPPA24-27S, G142D, V213G, G339D, S371F, S373P, S375F, T376A, D405N, R408S, K417N, N440K, L452R, S477N, T478K, E484A, F486V, Q498R, N501Y, Y505H, D614G, H655Y, N679K, P681H, N764K, D796Y, Q954H, N969K

Spike (BA.4/5, Omicron Variant) (SARS-CoV-2) Pseudotyped VSV Delta G (Luciferase Reporter)

78644-2 500 µl x 2
EUR 3995
Description: The Spike protein of BA.4 and BA.5 variants of SARS-CoV-2 have identical mutations. In this datasheet, the spike protein of BA.4 and BA.5 are referred to as BA.4/5._x000D_The Spike (BA.4/5, Omicron Variant) (SARS-CoV-2) Pseudotyped VSV Delta G (Luciferase Reporter) was produced with SARS-CoV-2 Spike (Genbank Accession #QHD43416.1 containing all the Omicron BA.4/5 mutations; see below for details) as the envelope glycoprotein instead of VSV-G. The pseudovirions contain the firefly luciferase gene, therefore, the spike-mediated cell entry can be measured via luciferase activity. The Spike (BA.4/5 Variant) (SARS-CoV-2) Pseudotyped VSV Delta G (Luciferase Reporter) can be used to measure the activity of a neutralizing antibody against SARS-CoV-2 BA.4/5 variant in a Biosafety Level 2 facility._x000D_The Spike (BA.4/5 Variant) (SARS-CoV-2) Pseudotyped VSV Delta G (Luciferase Reporter) has been validated for use with target cells Vero-E6 and ACE2-HEK293 (BPS Bioscience #79951). Spike VSV Delta G is preferred for use in cells such as Vero-E6 and Calu-3._x000D_Spike Mutations in BA.4/5, Omicron Variant:_x000D_Del69-70, T19I, LPPA24-27S, G142D, V213G, G339D, S371F, S373P, S375F, T376A, D405N, R408S, K417N, N440K, L452R, S477N, T478K, E484A, F486V, Q498R, N501Y, Y505H, D614G, H655Y, N679K, P681H, N764K, D796Y, Q954H, N969K

Spike (BA.1.1, Omicron Variant) (SARS-CoV-2) Pseudotyped VSV Delta G (Luciferase Reporter)-100 µl

78641-1 100 µl
EUR 795
Description: The Spike (BA.1.1, Omicron Variant) (SARS-CoV-2) Pseudotyped VSV Delta G (Luciferase Reporter) was produced with SARS-CoV-2 Spike (Genbank Accession #QHD43416.1 containing all the Omicron BA.1.1 mutations; see below for details) as the envelope glycoprotein instead of VSV-G. The pseudovirions contain the firefly luciferase gene; therefore, the spike-mediated cell entry can be measured via luciferase activity. The Spike (BA.1.1 Variant) (SARS-CoV-2) Pseudotyped VSV Delta G (Luciferase Reporter) can be used to measure the activity of a neutralizing antibody against SARS-CoV-2 BA.1.1 variant in a Biosafety Level 2 facility.As shown in Figures 1 and 2, the Spike (BA.1.1 Variant) (SARS-CoV-2) Pseudotyped VSV Delta G (Luciferase Reporter) has been validated for use with target cells Vero-E6 and ACE2-HEK293 (BPS Bioscience #79951). Spike VSV Delta G is preferred over lentiviral-based spike pseudoviruses for use in cells such as Vero-E6 parental cells.Spike Mutations in BA.1.1 Omicron Variant:A67V, Δ69-70, G142D, Δ143-145, Δ211, L212I, ins214EPE, G339D, R346K, S371L, S373P, S375F, K417N, N440K, G446S, S477N, T478K, E484A, Q493R, G496S, Q498R, N501Y, Y505H, T547K, D614G, H655Y, N679K, P681H, N764K, D796Y, N856K, T95I, Q954H, N969K, L981F

Spike (BA.1.1, Omicron Variant) (SARS-CoV-2) Pseudotyped VSV Delta G (Luciferase Reporter)-500 µl x 2

78641-2 500 µl x 2
EUR 3995
Description: The Spike (BA.1.1, Omicron Variant) (SARS-CoV-2) Pseudotyped VSV Delta G (Luciferase Reporter) was produced with SARS-CoV-2 Spike (Genbank Accession #QHD43416.1 containing all the Omicron BA.1.1 mutations; see below for details) as the envelope glycoprotein instead of VSV-G. The pseudovirions contain the firefly luciferase gene; therefore, the spike-mediated cell entry can be measured via luciferase activity. The Spike (BA.1.1 Variant) (SARS-CoV-2) Pseudotyped VSV Delta G (Luciferase Reporter) can be used to measure the activity of a neutralizing antibody against SARS-CoV-2 BA.1.1 variant in a Biosafety Level 2 facility._x000D_As shown in Figures 1 and 2, the Spike (BA.1.1 Variant) (SARS-CoV-2) Pseudotyped VSV Delta G (Luciferase Reporter) has been validated for use with target cells Vero-E6 and ACE2-HEK293 (BPS Bioscience #79951). Spike VSV Delta G is preferred over lentiviral-based spike pseudoviruses for use in cells such as Vero-E6 parental cells._x000D_Spike Mutations in BA.1.1 Omicron Variant:_x000D_A67V, Δ69-70, G142D, Δ143-145, Δ211, L212I, ins214EPE, G339D, R346K, S371L, S373P, S375F, K417N, N440K, G446S, S477N, T478K, E484A, Q493R, G496S, Q498R, N501Y, Y505H, T547K, D614G, H655Y, N679K, P681H, N764K, D796Y, N856K, T95I, Q954H, N969K, L981F

Luciferase Protein

abx073317-20kDa1g 20 kDa; 1 g
EUR 225

Luciferase Protein

abx073317-2kDa1g 2 kDa; 1 g
EUR 3550

Luciferase Protein

abx073317-5kDa1g 5 kDa; 1 g
EUR 325

Luciferase protein (His tag)

80R-1462 100 ug
EUR 307
Description: Purified recombinant firefly Luciferase protein

firefly Luciferase Recombinant Protein

PROTA3KBZ5 20ug
EUR 250
Description: Firefly Luciferase Recombinant Protein expressed in E. coli with His-tag. Sequence domain: 1-550aa. Application(s): SDS-PAGE.

COVID-19 S Protein / (Luciferase)-(6His) VLP

VLP002 1x108 VP/ml x 200ul
EUR 455
Description: COVID-19 Spike protein (S) Virus Like Particle, packaged with firefly luciferase genomic material. Particles were concentrated and provided in PBS solution

OPPA02425-5UG - Luciferase Firefly Protein

OPPA02425-5UG 5ug
EUR 70

renilla reniformis Luciferase Recombinant Protein

PROTP27652 10ug
EUR 241
Description: renilla reniformis Luciferase Recombinant Protein expressed in E. coli with His-tag. Sequence domain: 1-311aa. Application(s): SDS-PAGE, Enzyme Activity. Endotoxin: < 1 EU per 1ug of protein (determined by LAL method).

Luciferase Luciferin 4-Monooxygenase Firefly Recombinant Protein

PROTP08659 Regular: 20ug
EUR 380.4
Description: Luciferase produced in E.Coli is a single, non-glycosylated polypeptide chain containing 571 amino acids (1-550 a.a.) and having a molecular mass of 62.9kDa.;Luciferase is fused to a 21 amino acid His-tag at N-terminus & purified by proprietary chromatographic techniques.

Recombinant Photinus pyralis Luciferase protein, N-His Tag

MBS157146-005mg 0.05mg
EUR 320

Recombinant Photinus pyralis Luciferase protein, N-His Tag

MBS157146-01mg 0.1mg
EUR 410

Recombinant Photinus pyralis Luciferase protein, N-His Tag

MBS157146-5x01mg 5x0.1mg
EUR 1520

Recombinant other Luciferase Firefly Protein, His, E.coli-1mg

QP12597-1mg 1mg
EUR 3308.4

Recombinant other Luciferase Firefly Protein, His, E.coli-1ug

QP10776-1ug 1ug
EUR 186

Recent Posts

Tags

April 2025
M T W T F S S
 123456
78910111213
14151617181920
21222324252627
282930  

Categories